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Analysis of gene regulation in ESPP bacteria relies on comparisons to model organisms, 
and hence on assumptions about how gene regulation evolves.  To test these assumptions 
we examined the evolutionary histories of transcription factors and of regulatory 
interactions from the model bacterium Escherichia coli K12. We show that although most 
transcription factors have paralogs, these usually arose by horizontal gene transfer rather 
than by duplication within the E. coli lineage, as previously believed.  Most neighbor 
regulators -- regulators that are adjacent to genes that they regulate -- were acquired by 
horizontal gene transfer, while most global regulators evolved vertically within the 
gamma-Proteobacteria. Neighbor regulators are often acquired together with the operon 
that they regulate, which suggests that the proximity is maintained by repeated transfers, 
and also aids the prediction of the regulators' function.  Because of the complex 
evolutionary histories of most transcription factors, bidirectional best hits tend to be 
misleading, and most annotations of bacterial regulators are probably incorrect. 
 
When we analyzed the histories of regulatory interactions, we found that the evolution of 
regulation by duplication was rare, and surprisingly, many of the regulatory interactions 
that are shared between paralogs result from convergent evolution.  Furthermore, 
horizontally transferred genes are more likely than other genes to be regulated by 
multiple regulators, and most of this complex regulation probably evolved after the 
transfer.  Finally, gene regulation is often not conserved, even within the gamma-
Proteobacteria.  Our results suggest that the bacterial regulatory network is evolving 
rapidly under positive selection.  Such rapid rewiring of gene regulation may be crucial 
for adaptation to new niches. 



  

Rapid Evolution of Gene Regulation

● Transcription factors (TF) have complex histories
– Rampant transfer (not duplication)

● “Orthologs” are problematic
● Annotations are usually incorrect

– “Neighbor regulation”
● driven by horizontal gene transfer, aids annotation

– Global regulators are more conserved
● but we can predict little about other divisions

● Regulatory interactions not highly conserved



  

Vertical Inheritance of Global 
Regulators in E. coli

17/20 top global regulators are native
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Complex Histories
of Neighbor Regulators in E. coli

● Co-transfer: ~60% of neighbor regulators,
45% of putative regulators => predictions 

● Repeated HGT: ~40% of neighbor reg.
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Duplication of rbsR/purR

● Dups are rare (13% of E. coli TFs)

● Non-overlapping functions (~half of dups)
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Sources of the CRP Regulon

● From distant bacteria w/o CRP (~80%)
● From related bacteria with CRP (~20%)

– CRP site conserved across HGT in 4/12

● Sites usually not conserved across HGT (6/20 
for global regulators)
– except for co-transfer (presumably)

-175 aAgTGTGccgtagtTCACgaTc E. coli yiaK
-148 aAaTagGAtctagaTCACAaaa H. inf. yiaK
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Apparent Evolution of Regulation
by Duplication is Convergent

dcuR arcA dctA

Escherichia etc. + + +

Salmonella + + +

Klebsiella + + +

Photorhabdus - + +

Erwinia + + +

Yersinia - + +

Sodalis - + -

- - -

Pasteurellaceae - + -

Photobacterium - + -

Vibrio - + -

Shewanella - + -

Colwellia, ... - + -

Acinetobacter, ... - - +

Pseudomonas, ... - - +

dcuR from Firmicutes,
dctA from distant -Proteo.
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(B) Rapid & Convergent Evolution of Regulatory Interactions
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BBHs of TFs Have Different Functions

● Different pathways & stimuli
– E. coli betI: choline -> osmotic stress

– B. subtilis pksA: polyketide synthase

E. coli, etc.

-Proteobacteria

betI: HGT or 3 losses pksA: 2 HGT or >5 losses

B. subtilis, etc.

 Staphylococcus

Symbiobacterium
(within Clostridia)

17/26 different functions between E. coli, B. subtilis
9/20 different between E. coli and other divisions of Proteobacteria


